Álgebra de matrices

Álgebra de matrices 


El objetivo de este blog es difundir herramientas de matemáticas que puedan ser usados por personas de todo el mundo. "Álgebra de matrices"


Álgebra de matrices
La matriz unidad de orden n×n es la matriz I de orden n×n en la cual todas las entradas son cero excepto los de la diagonal principal, que son 1. En símbolos:

    Iij = 1 si i = j y Iij = 0 si i ≠ j.
Una matriz cero es una matriz O en la cual todas las entradas son cero.
Las operaciones de adición, multiplicación escalar, multiplicación entre matrices se cumplen las siguientes reglas:
A+(B+C) = (A+B)+C Regla asociativa de adición
A+B = B+A Regla conmutativa de adición
A+O = O+A = A Regla unidad de adición
A+( - A) = O = ( - A)+A Regla inversa de adición
c(A+B) = cA+cB Regla distributiva
(c+d)A = cA+dA Regla distributiva
1A = A Unidad escalar
0A = O Cero escalar
A(BC) = (AB)C Regla asociativa de multiplicación
AI = IA = A Regla unidad de multiplicación
A(B+C) = AB + AC Regla distributiva
(A+B)C = AC + BC Regla distributiva
OA = AO = O Multiplicación por matriz cero
(A+B)T = AT + BT Trasposición de una suma
(cA)T = c(AT) Trasposición de un producto escalar
(AB)T = BTAT Trasposición de un producto matriz
La única regla que está notablemente ausente es la de conmutatividad del producto entre matrices. El producto entre matrices no es conmutativo: AB no es igual a BA en general.


Ejemplos
La siguiente es la matriz unidad de orden 4×4:
    I =
    1
    0
    0
    0
    0
    1
    0
    0
    0
    0
    1
    0
    0
    0
    0
    1
El fallo de la regla conmutativa para el producto entre matrices se muestra por el siguiente ejemplo:
    A =
    0
    1
    1/3
    -1
    B =
    1
    -1
    2/3
    -2
    AB =
    2/3
    -2
    -1/3
    5/3
    BA =
    -1/3
    2
    -2/3
    8/3

Leer mas en: www.zweigmedia.com/MundoReal/Summary3a.html

0 comentarios :

Publicar un comentario